
NASA/CR-2000-210082

ICASE Report No. 2000-11

Automated Parallelization of Discrete State-space
Generation

David M. Nicol

Dartmouth College, Hanover, New Hampshire

Gianfranco Ciardo

The College of William and Mary, Williamsburg, Virginia

March 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

• Email your question via the Internet to

help@ sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2000-210082

ICASE Report No. 2000-11

= =-%i

; _ ._i_i!i....... _; _

Automated Parallelization of Discrete State-space
Generation

David M. Nicol

Dartmouth College, Hanover, New Hampshire

Gianfranco Ciardo

The College of William and Mary, Williamsburg, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-19480

March 2000

Available fi'om tile following:

NASA Center for AeroSpace hffomlation (CASI)

7121 Standard Drive

Hanover, MD 21076 1320

(301) 621 0390

National TectHficalhffomlation Service(NTIS)

5285 Port Royal Road

Spfingfield, VA22161 2171

(703) 487 4650

AUTOMATED PARALLELIZATION OF DISCRETE STATE-SPACEGENERATION*

DAVIDM.NICOLtANDGIANFRANCOCIARDO{

Abstract. Weconsidertheproblemof generatinga largestate-spacein a distributedfashion.Unlike
previouslyproposedsolutionsthat partitionthe setof reachablestatesaccordingto a hashingfunction
providedby theuser,weexploreheuristicmethodsthat completelyautomatetheprocess.Thefirst step
isan initial randomwalkthroughthestatespaceto initializea searchtree,duplicatedin eachprocessor.
Then,thereachabilitygraphisbuilt in a distributedway,usingthesearchtreeto assigneachnewlyfound
stateto classesassignedto theavailableprocessors.Furthermore,weexploretworemappingcriteriathat
attemptto balancememoryusageor futureworkload,respectively.Weshowhowthecostofcomputingthe
globalsnapshotrequiredforremappingwill scaleupfor systemsizesin theforeseeablefuture.Anextensive
setof resultsispresentedto supportourconclusionsthatremappingisextremelybeneficial.

Key words. Markovchain,dynamicremapping,state-space,breadth-first-search

Subject classification. Computer Science

1. Introduction. Discrete systems are frequently analyzed by generating and examining their under-

lying state-space. While a valuable technique, its most serious weakness is that large complex systems may

require the generation and analysis of tremendously large state-spaces. There is relatively little locality of

reference in the generation process, which means that ordinary virtual memory systems thrash once the gener-

ated state-space exceeds the available main memory. We are interested in extending the size of state-spaces

amenable to generation by exploiting the aggregate memory available in a distributed-memory computer

system. In earlier work we showed how this could be accomplished using a user-defined hash-function that

statically partitions the graph among processors [2]. Given a generated state (typically a vector of integers),

the hash-function identified the processor to which the state was statically assigned. While we showed that

a well-tuned hash-function can effectively balance the workload partition and achieve reasonable execution

time etficiencies as well, the method suffers from some obvious drawbacks. The user must have a thorough

understanding of how the state-space will develop in order to craft a hash-function that both balances the

graph partition, and keeps the number of graph edges that cross processor boundaries low. If ever in the

course of generation just one processor is so burdened with states that it exhausts its available memory, the

whole computation fails. If in the course of generating the graph it transpires that the generation process

is not exploiting much parallelism, nothing can be done. Finally, the requirement of a user-defined func-

tion for every different modeled system makes development of a general distributed graph generation tool

problematic.

In this paper we develop techniques that automate parallelization of state-space generation. Our methods

include innovations in the mapping of states to processors, and policies for remapping workload. Our methods

have been embedded in a general distributed state-space generation tool which itself has been integrated as

*This work was supported in part by NSF grants CCR-9201195 and NCR-9527163, in part by subcontract 96-SC-NSF-

1011 from the Center for Advanced Computing and Communication, and in part by the National Aeronautics and Space

Administration under NASA Contract No. NAS1-19480 while the authors were in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.

tDartmouth College, Hanover, NH 03755

SThe College of William &: Mary, Williamsburg, VA 23185

theback-endofa stochasticPetrinetmodelingtool,spnp [4].Weexaminetheutility andcostsofdynamic
remappingforthetoolexecutingonanIBM SP-2,consideringeffectivenessin bothmemorybalancingand
run-timeparallelism.Wefind that ourautomatedmethodsaremuchbetterthanoptimallyhand-tuned
staticmethodswith respectto bothmemorybalanceandspeedup.

Theremainderof thispaperisorganizedasfollows.Section2 providesbackgroundinformationonthe
mechanicsofstate-spacegenerationanditsdistributedimplementation,andsketchesrelatedwork.Section3
describesourmethodforautomaticallyassigningstatesto processors.Section4thenfocusesonremapping.
Section5describessomeessentialdetailsregardingmessage-passinginourimplementation.Section6reports
onexperimentsweconducted,Section7developssomeanalyticresultsrelatedto thiswork,andSection8
givesourconclusions.

2. Background.Manydiscretesystemsareanalyzedformallyby consideringtheir full underlying
state-space.Typicallya "state"ofthesystemisa vectorof integers.Forinstance,in a queueingnetwork
thestateisa vectorofthequeuelengths,onecomponentperqueue;ina Petrinetthestateisavectorof
tokencounts,onecomponentperplacein thePetrinet;in asystemofcommunicatingfinitestatemachines
thevectorcontainscomponentsdescribingtheinternalstatesof thosemachines.Froma state,it isusually
possibleto transitionto otherstates.A transitionmaybecausedbyanexternalarrivalto thesystem,orby
theinternalstochasticevolutionrulesofthemodel.In bothqueueingnetworksandPetrinets,forinstance,
thesystemremainsin a states for a random period of time and then chooses some new state s t that is

reachable from s; a job moving from one server to another changes the vector of queue lengths describing a

queueing network, a transition firing changes the marking of a Petri net. In the following, by "state-space" we

mean the directed graph whose nodes are the reachable states and whose edges describe transitions between

states, the edge being directed towards the state resulting from the transition represented by the edge.

The state space for a system may be infinite--a single queue with infinite buffering can conceivably build

up beyond any pre-specified queue length given a rapid enough set of arrivals. We concern ourselves here

with the problem of generating finite state-spaces, although the methods will work equally well for infinite

spaces if one includes a rule for terminating their expansion.

State spaces are typically built using breadth-first generation. Initially, some starting state is placed

on the list of "unexplored states". The starting state is also used to initialize a tree that will organize the

"found (up to that point) states" for an efficient search. The generation process then enters a loop that

terminates only when the list of unexplored states is empty. At each loop iteration, the first unexplored state

is removed and added to the list of "explored states", and (using rules specific to the problem domain) all

states reachable from it in one transition (i.e., children) are generated. Each of them is then searched in the

tree; if a child is found to have been generated already, then only a new graph edge is introduced, rooted in

the child's parent and directed towards the existing node. If a child is not found in the tree, then it is first

inserted into the tree, before adding a state-space edge directed to it from its parent, and the child is placed

at the end of the list of unexplored states. Figure 2.1 illustrates the relationship between explored states, the

next state to explore, and the next location to place a newly generated state. The search tree is extended

and balanced through manipulation of pointers, the states themselves do not move within the illustrated

layout. We stress that the order in which states are found is in no way related to the lexicographic order

used in the search tree.

The application-specific part of state-space generation can be separated from the common aspects

through a well-defined interface, such as that we describe in [2]. One benefit is the immunization of the

system modeler from details concerning parallelization. The techniques we describe in this paper follow in a

set,lored
te "unexplored

-- position states

----------_. _:_... of next w

' unexplored

state found

found

states

F_C. 2.1. Organization of explored, unexplored, and found states.

similar vein and have been implemented in a manner that supports integration with any modeling front-end

that correctly uses the interface.

Different analyses are conducted once the graph is generated, depending on the application. In models of

communication protocols one looks to see whether any of the reachable states represents deadlock. Livelock

is also possible and is detected by identifying transient states (ones that may become unreachable once left).

Resource requirements can be extracted from an understanding of the relationship between state expression

and resources. Parallel algorithms for performing these types of analyses are discussed in our earlier paper [2].

When the state-space represents an ergodic continuous-time Markov chain one typically solves a set of linear

equations (the global flow-balance equations [22]) that associate a stationary probability with each node in

the graph. Methods for solving linear equations in parallel are standard and will not be discussed here except

to say that good performance can be expected if the graph clusters well and the states are evenly balanced

among processors. Indeed, we anticipate that Markov analysis will be one of the principle applications for our

methods; our emphasis on balancing memory utilization derives in part from our recognition that balanced

memory is required to balance the workload of the linear system solution phase.

One aspect of distributed state-space generation sets it apart from other types of computations that are

usually distributed--the need to determine whether a newly generated state has been generated before. For,

discovery that state B is a child of state A establishes a unique and previously unknown link between A

and B, but state B may also be a child of state C, and so may already be represented somewhere in the

system. This is one of the key differences between serial and distributed state-space generation; a newly

generated state must be sent to some processor responsible for that state, to determine whether this is a

new or repeated instance of the state. Maintaining a global directory of states is not practical, instead we

must use the state description itself to determine its location. Our previous approach was to hash the state

vector into the range of integer processor identifiers, using a user-defined hash function. When a generated

state maps to a different processor, the state and edge information is sent to the correct location.

As automatic parallelization cannot depend on a user defined hash function, a different approach is

needed. We see two requirements. First, the location of any state must be determined quickly, without

interprocessor communication. Furthermore, we must map states so that a child state is likely to be mapped

to the same processor as its parent, otherwise we will be overwhelmed by inter-processor communication.

Second, we need to support dynamic remapping of workload, and descriptions of known states. The remap-

ping problem is hampered by the fact that future execution requirements are unknown, and unknowable,

because the structure of the as-yet-undiscovered portion of the state-space is not known.

Another dimension of the remapping problem is to determine what to remap, how to remap, and when

to remap. These issues are developed in the following sections, after we discuss related work.

Earlyworkon load-sharinghada worldviewof independentjobsin a distributedsystem.Themain
interestwasin job migrationpolicies[23,6, 13]that bestutilizedsystemresources.Thealgorithmswere
asynchronous,workloadmovedwithoutglobalsynchronizationandwithoutaglobalviewofthesystem;key
issueswerehowtransfersareinitiated,andwhatinformationisusedtogovernthoseinitiations.Morerecent
workhasa differentviewof workload,but hascontinuedin theasynchronousvein[24,12].A synchronous
viewofremappingwastakeninworkondecisionpoliciesthatfocusonwhento remap[18,19,20];balancing
thedelaycostofremappingagainsttheanticipatedperformancegainistheessenceofthesepolicies.Globally
synchronousremappingtechniquesaredevelopedin [5,25].Thesemethodsiterate;ateachiteration,pairsof
processorsbalanceworkloadbetweenthem,andultimatelysomeglobalsenseofbalanceisachievedwithout
anyoftheprocessorseverhavinghadaglobalviewofthesystem.

Our applicationandparallelizedbranch-and-boundcomputationssharethe problemthat at a point
whenoneremaps,futureworkloadisunknown.Variousmethodsforapproachingparallelbranch-and-bound
havebeenstudied[11,10,14,21].A criticaldifferencebetweenourapplicationandbranch-and-boundis
that wemuststorethestate-spaceweexplore,that isnot typicallydonein branch-and-bound.A branch-
and-boundalgorithmmaygeneratea givensubproblem(andthenall of its descendents)multipletimes;we
donot. Unlikebranch-and-bound,whenwegeneratea state,wemustdeterminewhetherthat statehas
beengeneratedbefore.Wehavesemanticreasonsfor achievingsomelevelof localitybetweenourstates,
branch-and-boundisnotsoconstrained.

Ourapproachis to exploitthehighconnectivitythat moderninterconnectionnetworksprovide,and
computeremappingssynchronously,anddirectly.Eachprocessorhasapictureofthegloballoaddistribution,
andwhenimplementinga remapping,apieceofworkloadordatagoesdirectlyfromits sourceprocessorto
its targetprocessor.Directmethodshavebeenconsideredin thecontextof largescaleparallelprocessing
systems[7,1, 15],but thesedonot takea globalview.Whileourapproachis pragmaticanddrivenby
availabletechnology,wewill argue,at theendof Section7, that it scalesup to moderatelylargeparallel
systemsandsohassomefuturevalueaswell.

3. Automated StateMapping. Tohelpunderstandtheintuitionbehindourmethodswefirstbriefly
reviewthemechanicsof balancedtrees.AsourimplementationusesAVLtrees[9],ourdescriptionapplies
specificallyto these,aswellascertainothercommonlyusedsearchtrees.Oneusesanapplication-specific
comparisonoperatorsuchthat for anystatevectorsA and B, either A < B, A > B, or A = B. Given a

tree and some state vector C, we determine whether C is in the tree by comparing it with the tree's root,

R. If C = R we are done, otherwise we recursively search the left subtree of R if C < R, and the right

subtree otherwise. If we find that C is not in the tree, it is inserted into the tree at the "exit point" of the

last comparison. That is, if state vector B was the tree member against which C was last compared, then

B becomes C's parent in the tree; C is B's left child if C < B and is its right child otherwise. The tree may

balance itself following the insertion. We will say that a state in the tree has a left exit point if it has no left

child; a right exit point is similarly defined.

For state-space generation with vector-valued states, it is typical to use lexicographical ordering to

compare two states. If A = (al,a2,. .. ,an) and B = (bl,b2,..., bn), then one determines the ordering

exactly as one would if A and B were n-digit numbers, scanning from left to right looking for the first

coordinate position in which A and B differ, using the comparison of the values in that position to determine

the vector ordering.

We replace the hash function of our earlier work with a classifier based on balanced tree mechanics.

We will map (and remap) classes, not individual states. Classes are defined with respect to a control set of

statesorganizedasa searchtree. Thesamecontrolsetis built byeachprocessorduringan initialization
phase,anddoesnotchangethroughoutthesubsequentgraphgenerationphase.Theexitpointsof its tree
areenumerated.Anystatefoundduringthebreadth-firstexplorationis classifiedbysearchingforit in the
controlset'stree. If foundin thecontrolset,it is consideredto bein class0. Otherwise,the identityof
its exitpointdefinesits class,andits currentprocessoris retrievedfroma class-to-processorlookuptable.
Figure3.1illustratesa controlsettreewithfournodesandtheinducedfiveclassdefinitions.

(3,1,0,0)

(3,0,1,0) (4,0,0,0)

... .

(3,0,0,1)

F_c. 3.1. Balanced tree and definition of classes via exit points

To keep communication costs down, it is desirable that a child and parent frequently map to the same

class. At the same time, we need states to be spread among classes to give us flexibility in remapping. Our

choice of control set and its organization attempts to achieve these conflicting goals. A poor choice for the

control set might map nearly all states into a very small number of classes (a fact we discovered the hard

way); observe that, in Figure 3.1, any state with a 0, 1, or 2 as its first component is mapped into class 1.

Understanding the tree search as being nearly equivalent to a hashing function, we see that the control set

needs to capture characteristics of the whole state-space in the same way as a hashing function does. To

acquire these characteristics we create the control set from random walks.

At initialization, each processor generates a number of random walks though the state-space. States hit

by a random walk are saved. Each random walk begins at the initial state; given the last state visited by the

walk, its children are generated. One of the children is selected uniformly at random to be the next state in

the random walk and its siblings are discarded 1.

To further avoid any systematic over-clustering of states, we randomize the lexicographical ordering.

Using synchronized random number generator seeds, each processor generates the same permutation vector

idx[] to randomize the ordering of state components. Thus, idx[0] holds the index of the first state com-

ponent examined in the lexicographical comparison, idx[1] holds the second index examined, and so on.

We found this a valuable tool to protect us from the potential problems arising from correlation of states'

components (consider--hashing on a vector of components whose values are highly correlated effectively

diminishes the "spreading" of the hashing function. Lexicographical ordering is like hashing in this regard.)

Indeed, the "natural order" in which they would be considered if we were not permuting them (e.g., the

order in which the places are specified in a Petri net model), often reflects the modeler's thinking of the

system, and it is not likely to be truly "random". This is a case where a truly uninformed decision is instead

desirable. Indeed, experiments where we generated orderings that encourage locality by placing components

likely to change in a transition at the end of the lexicographical ordering were too successful, in that they

created classes too large to move. Until our mechanism can dynamically split classes (which we discuss later)

it seems that randomization is the most sensible approach.

1We stress that if the graph represents a Markov chain, this differs from the probability that a given child is actually

reached: we are now interested in strictly structural properties of the state-space, not in the stochastic and timing behavior of

the graph.

Despite the extensive randomization, this method of class definition will induce a certain level of locality

among states in a common class. For a moderately sized control class, class definition is likely to be entirely

determined by comparison with indices early in the comparison sequence. There is a reasonable chance that

a child will reside in the same class as its parent for the simple reason that the difference between the parent

and child vectors is usually restricted to a few state components, and if classes are determined by entirely

different state components, the child and parent will be in the same class. We formalize this intuition in

Section 7 where we derive a lower bound on the probability that a child resides in the same class as its

parent.

The processors collectively merge all saved states on all processors to define the control set, and build a

tree over this set using the randomized lexicographical comparison function. Each processor then traverses

the tree, evenly partitioning the member states among processors for exploration and evenly partitioning

the classes among processors to build the first class-to-processor mapping table. No communication is

involved: each processor has the same control set organized the same way, it executes the same algorithm

as all the others to determine which states seed its exploration list, as a function of its processor identifier.

The processors synchronize globally to terminate the initialization phase, and then begin the distributed

generation.

A class-based mapping approach requires modifying the internal organization. A single tree per processor

is inadequate, since it makes it inefficient to identify members of a remapped class and remove them. Instead

we use an independent search tree for each class. We cannot pre-allocate memory for classes, so we partition

memory into blocks of contiguous states that are allocated individually to processors.

list of

blocks

with

unexplored .

states

list of found states in class 1

explored

states m

class 1

unexplored

states in

class 1

unused

list of found states in class 2

explored

states in

class 2

unexplored

states in

class 2

unused

FIG. 3.2. Block-oriented organization of class-grouped states m a given processor, assuming that it is assigned classes 1
and 2.

The overall approach to distributed generation differs slightly from the hash-function based approach.

First, the mechanism for identifying a state's location is different, as we have described. Second, our internal

method for uniquely identifying a state (for the purposes of edge description) is different. Earlier, the source

of an edge was described by a counter-processor pair (e.g., the 12664 th state on processor 23); since states

remap, we now use a counter-class pair. A third difference is management of state exploration. Despite

the partitioning into state-blocks, the states associated with a class can still be viewed as being ordered

(logically) contiguously with a pointer to the next state to explore and a pointer to the next place to insert

a new state. When new memory is assigned to a class, an entire new block is assigned, and the block is filled

sequentially. All state blocks of all classes holding unexplored states are on a singly linked list; whenever

a new state block is allocated it is attached to the end of this list. The state expansion loop works off the

linked list, exploring each state in the head block until exhausted, after which the head block is removed,

and processing is applied to the new head block.

Whena processorexhaustsits list of explorablestatesit engagesin distributedterminationlogic.Of
course,it maybethatthereisstill ampleworkloadelsewherein thesystem,someofwhichwill beremapped
at thenextremappingepoch.Thereareavarietyofmethodsonemightuseto detecttermination;aslong
asits costisnotintrusive,thechoicematterslittle. Weusethenon-committalbarriersynchronization[16]
asthat waseasyto integrateintothedistributedgenerationlogic.

Thestate-classificationmethodmaybeextendedto allowthecontrolsetto growdynamically,anexten-
sionwehopeto investigatein thenearfuture.If it transpiresthattoomanystatesaremappedto a class,
onecan"split" theclassinanintuitiveway.Sincetheclassisorganizedasabalancedtree;therootofthat
treeispromotedto thecontrolclass,andtheleftandrightsubtreesofthatrootdefinenewclasses.Thetwo
newclasseshavenearlyequalsizessincethetreeisbalanced.Thepromotionmaycausethecontrolsetto
berebalanced,butsucha balancing(at leastwith treesemantics)doesnotchangeanypreviouslydefined
classes,andoneisassuredthat thenewlypromotedstateremainsaleafnodein thecontrolset.

4. Remapplng.Remappingrequirespoliciesgoverningwhen to map, how to remap, and what to remap.

The latter consideration depends on one's objectives: a policy optimized to balance memory utilization is

different from one optimized to reduce execution time, which is different from one optimized to remap only

when one processor is in danger of exhausting its memory space. We will consider remapping all classes,

based on known size (to balance memory utilization), and remapping only classes with unexplored states

(to balance anticipated future execution costs); in the following discussion we simply speak of a processor's

"load" with the understanding that either notion applies.

A variety of remapping problems have been explored in the literature, see [26] for a survey. One important

characteristic is whether the method is synchronous or asynchronous. We are driven towards a synchronous

approach because of the overwhelming problem of keeping state location information up-to-date. At any

time, any processor might generate any state, and need to send it anywhere. We did not wish to deal with

the problems an asynchronous method would present with respect to mapping information. We are also

driven towards a "direct" approach to remapping, where a source processor directly sends workload to the

processor that ultimately receives it, without consideration of the communication network topology. This

stands in contrast to iterative approaches where a piece of load may migrate several times in the course of

a remapping. We are pragmatists; the machines we have available to us are moderately sized, and some

of them have very high-bandwidth networks. Furthermore, on shared multiprocessors the subset of nodes

(and the communication topology induced by the subset) upon which the program is executed varies from

run to run. In this context it makes sense to directly compute remappings using globally disseminated load

information, and to eschew any dependence on underlying communication topology. The mechanisms we use

to accomplish the global dissemination are standard vector-valued reduction primitives that have long been

found in message-passing libraries such as the Intel nx library, and MPI [8]. Only experimentation on very

large parallel computers will definitively answer whether such methods are appropriate on such machines.

We formerly investigated two styles of remapping decision policies. Papers [19] and [20] balance the delay

cost of remapping against the performance degradation due to load imbalance and global blocking at the

problem's natural synchronization points. This policy focuses entirely on minimizing execution time, and we

saw no clean way of extending it to encompass memory balance. Policies that weigh the cost of remapping

against the anticipated benefit of remapping over the remaining lifetime of the computation are investigated in

[18]. These policies principally account for the error that is natural in statistical measurements. On reflection

we realized that the decision of whether to remap is fundamentally a choice of remapping frequency. Graph

generation can be a long-lived computation with load constantly drifting out of balance. The question is not

whethertoremap,buthowoftentoremap.Beforeinventingapolicyforautomatingtheremappingfrequency
wewill experimentallyvaryit to determinehowperformancedependsuponit. Whenwedobalance,we
attemptto balancenearlyperfectly.Thereiscompellingtheoreticalevidencethat ina computationofthis
sortweshouldattemptto redressany rebalance; the model studied in [17] shows that under workload growth

not dissimilar to ours, the maximum memory use by any processor is stochastically smaller the closer to

perfect balance we can achieve with a remapping. However, as a means of controlling remapping overhead,

we will provide mechanisms that back away from this most aggressive form of balancing, if needed.

Our first problem is to get processors coordinated so that they periodically remap. This application has

no natural synchronization points, unlike many synchronous numerical methods (e.g. convergence checking).

We create synchronization points with real-time clocks. We initially synchronize processors' clocks and have

each processor establish a Unix signal generator that causes a timer interrupt every A units of real time.

The interrupt handler merely increments a counter; the graph generation code tests for changes in this

counter before processing any new state (and in other critical places), and upon detecting a change engages

immediately in a parallel reduction that serves both to synchronize the processors and to distribute load

information. A is obviously a key variable; excessive overhead results from too small a value, while processor

idleness may result from too large a value. Our experiments look at the effects of changing A.

We use a global vector OR reduction to synchronize processors. Each processor offers a vector with one

component per processor, zero-filled except for the processor's load value placed in its own component. All

processors gain the complete load vector and then exercise the same logic to determine what to do: send

load, receive load, or do nothing. Each processor begins by computing the average load #. Next it rescans

the load vector and defines the on-load group of processors whose loads are less than #; the off-load group is

formed by processors with load greater than #.

To determine how to remap each processor sorts the off-load group into decreasing load order, and sorts

the on-load group into increasing load order. Thus the off-load group is arranged with the most able to

contribute load at the front, while the on-load group is arranged with those most needing of states at the

front. The i th member of the sorted on-load group is paired with the i th member of the sorted off-load group;

if the on-load group is larger, we repeat the off-load group as needed. This is illustrated in Figure 4.1, an

off-load processor may need to distribute load to more than one other processor.

Off load group

On load group

decreasmgload } repeat... 1

Processor:

Load:

I
increasing load

F_G. 4.1. Pairing of source and destination processors

Each off-load processor attempts to bring every one of its assigned processors up to (but not beyond)

load # without causing its own load to drop below # or without spending too much time in transferring

remapped classes. The latter constraint is enforced by computing at initialization the maximum number

of states that a processor may send within a time-period equal to 0.1 x A. This calculation requires some

parametric description of message sending costs (and 10% is admittedly arbitrary), but experience with this

check has proven its utility in backing away from performance crippling remapping schedules.

Morespecifically,anoff-loadprocessorcreatesa list of classesavailableto move,in decreasingsorted
orderofload.It thenentersa loopwithinwhich,at eachiteration,attemptsto assignoneclassto eachof
its on-loadassignments,scanningthoseon-loadassignmentsinmost-needy-firstordering.Eachassignment
attemptscansthelist of availableclassesfromfrontto back,choosingthelargestas-yet-unassignedclass
that neitherbringsthetargetprocessor'sloadabove#, decreasesthesourceprocessor'sloadbelow#, nor
increasesthesourceprocessor'sestimatedremappingoverheadbeyondthelimitingthreshold.Theloopis
leftoncenofurtherassignmentsarepossible.

Thismethodispurelyheuristic.Sincetheclasseshavearbitrarysizesandareindivisible,theproblem
offindinganyassignmentthat minimizesthemakespanis intractable,letaloneanoptimalassignmentthat
minimizescommunication.Wedeliberatelymakenoattemptto maximizeon-processorgraphedges,say,by
consideringinter-classconnectivity.Ourexperiencewithmappinghasalwaysbeenthat simpletechniques
usuallyprovidemostof the benefitpossible,andwesawthat measuringinter-classarcswouldimpose
potentiallylargeadditionalexecutionandstoragecosts.Verylittle canbesaidformallyaboutthismethod;
whatcan be said is that the method is fast, and makes every effort to redress imbalance in those processors

that most sorely need more load.

Further communication is needed to prepare for the class transfers. The number of classes each off-load

group processor will send to each of its targets is established with another vector OR reduction, where off-load

processors (possibly repeated as illustrated earlier) fill in their components of a zero-filled vector with these

counts. All processors participate in the reduction, and take note of these counts as a means of interpreting

the next communication, where identities of classes being transferred are communicated through another

vector OR reduction. The length of this second vector is the total number of classes being transferred; each

off-load processor writes into a zero filled vector the identities of the classes it is about to transfer. Indexing

is supported by the earlier reduction that established transferred class counts, as shown in Figure 4.2, which

assumes the pairing described in Figure 4.1. Following the reduction, every processor has the information

needed to appropriately modify the class-to-processor mapping table, and does so. Each off-load processor

then packages the the classes scheduled for transfer, sends them to their scheduled recipients, and enters a

barrier. The recipients accept all scheduled classes, unpack them and create their data structures, and then

enter a barrier. Any other processor simply enters the barrier. Emerging from the barrier the processors

continue their state-generation activity until the next remapping check.

5--_0 2--_1 6--_7 5--_4 2--_3

13111212111

I 19 Illl I 46 _2 _18 I 79 t 39 I 21_ 8_

5---_0 2---_1 6---_7 5---_4 2---_3

OR reduced vector describing

the number of classes between

each (Off load,On load) pair.

OR reduced vector describing

the identity of each class that

will be remapped.

F_o. 4.2. Global communication of remapping specifics. Example assumes the pairing of processor illustrated in Figure $.1.

5. Message-passing Details. Our application's performance is affected significantly by how certain

message-passing details are handled; because of this dependence we describe those details.

It is still the case on most message-passing systems that the startup cost of sending a message is large

compared with the per-byte transfer cost. State vector lengths tend to be small (< 100 components), at least

for systems one can exhaustively analyze. A processor therefore dedicates an output buffer for each other

processor. As states are generated and "sent", they are in fact just buffered until the buffer becomes full, at

whichpointthesetof statesis finallysent.A processorwithnofurtherstatesto explorewill preemptively
flushitsbuffers.Weuse3000bytemessagebuffers.

Our applicationrunsunderMPI, whichtakescareof all low-levelmessage-passinglogic. Whena
messagearrivesoffthenetwork,MPIeitherroutesit to a memoryblockthat anapplicationdeclaredfor
it, or storesit internallyuntil themessageis sought.Deadlockcanresultif messagesarereceivedfaster
thantheapplicationconsumesthem.It isnecessaryto implementflowcontrolat theapplicationlevel,and
to besurethattheapplicationlooksfor newmessagessumcientlyoften.Ourcodeimplementsflow-control
with acknowledgements.It allowsa processorto sendup to U unacknowledged state messages to each

target processor; if it reaches this threshold, the application will not continue processing workload until an

appropriate acknowledgement comes in. A state message is acknowledged as soon as it is received. The

experiments we report use U = 10.

A counter is kept in the state exploration loop, enumerating the explored states. Every fourth state,

the application calls a routine that probes MPI for any messages, and processes all messages so identified.

Relatively frequent absorption of MPI-buffered messages is needed to keep senders from stalling at the

flow-control threshold.

6. Experiments. These experiments are designed to reveal how well our automated state-to-processor

mapping performs relative to our previous hand-tuned hash-function, and to determine how various aspects

of the new method contribute to the overall performance. The experiments were conducted on the IBM

SP-2, at NASA Langley Research Center. This is a shared multiprocessor where, to run a job, one submits a

request for a dedicated subset of nodes with a specified size. The processors of the subset are dedicated to the

application while it runs, but application communication traffic may contend with that of other applications.

For the purposes of comparison with our earlier approach, we will study a model of a Flexible Manu-

facturing System, illustrated in Figure 6.1, originally discussed in [3]. A key parameter to this model is the

number of tokens k initially placed in places P1, P2, and P3; increasingly larger state-spaces are generated

by increasing k. This Petri net has "timed" transitions (white boxes) and "immediate" transitions (black

boxes). The state-space generator eliminates all vanishing markings, those with one or more immediate

transitions enabled. When generating children caused by a timed transition firing, one or more immediate

transitions may be enabled, and these will be fired (and any further immediate transitions then enabled will

be fired, as so on) until all non-vanishing descendents are discovered.

The performance we report is speedup, relative to a specifically serial version. For k = 5, there are

152,712 states generated, with 1,111,483 edges between them in the state-space. A highly optimized serial

code requires 381 seconds of processing time on one SP-2 node.

One point of interest is a comparison between the optimized serial version and the new code running on

one processor. We find that the new code runs at 85_ the speed of the serial code. In modifying the code

to support remapping, we had to change the serial's code techniques for minimizing maUoc overhead. The

code currently is unoptimized with respect to dynamic memory overhead, we suspect this is the principal

cause of the difference in performance. Whatever the cause, an implication is that our 16 and 8 processor

runs can achieve speedups of at best 13.6, and 6.8, respectively.

The control classes sampled ranged from 800 to 900 states, around one half of one percent of the total

state-space size. Less than a second was required to sample and combine this set of states. We also measured

locality among states within a class; slightly over 50_ of all edges in the state space are between states in the

same class. An analytic explanation for locality is given in Section 7. The code we run is non-deterministic,

as its behavior depends on system snapshots measured at intervals induced by the interrupt timers, as well

10

p #(Pls) _#(Pls)

n "2-_* ,"1%, n "Y-, ,"-_,,

tpI _ _PIwP2

> PI2s PI2M3 PI2wM3 --" PI2)

- "-...7'e3 - 'e_M2 - 'e3_-
#(P3s)

F_o. 6.1. Petri Net Model of a Flexible Manufacturing System. White transitions are timed, black transitions are imme-

diate. Expressions in places denote the number of tokens in the initial marking, labels on places and transitions are used for

description, and labels on arcs describe the number of tokens transferred by the firing of the connected transition.

as randomization. We have found that variance due to randomization is surprising small (in cases where

no remapping occurs), but that variance due to different system states when remapping occurs have a more

pronounced affect on performance. The data we present for any set of parameters is based on five runs, reset

with the same random number generator seed. Different means of reporting on those runs will be described

when we look at different experiments.

We wished first to determine how well the automated state mapping works compared with the previous

hash-function approach. On the best of the hash functions we previously investigated, the new method (with

no remapping) is significantly faster (as much as 20%) than the old method. On another of the previously

studied hash functions (not a strawman, it seemed plausible that it would be good) the new method is over

five times faster on 16 processors. Thus it seems that the randomized class generation method coupled with

a cyclic mapping of classes to processors is every bit as effective as a smart hash function. But, as the

speedup achieved is only 7 (out of 16) there is clearly room for much improvement 2. We hope to recover

that potential using dynamic remapping.

We are interested in the characteristics of classes formed by randomization. Figure 6.2 plots the cumu-

lative distribution function of class size (in numbers of states). There are 789 non-empty classes overall. For

clarity, we present the data in two sections, the first for class sizes 1-100, the second for all sizes. We see

significant variation: 70% of classes have sizes smaller than 100 states, 10% of them have sizes greater than

1000.

The dynamic remapping experiments involve two notions of load. "Active" load measures the number

of unexplored states, which represent future execution workload. "Memory" load measures the number of

all extant states. We will balance active load in attempts to minimize execution time at the possible expense

of memory balance. We will balance memory load in attempts to evenly balance memory utilization at the

possible expense of computational balance. Figure 6.3 presents the speedup curves for both load definitions,

as a function of remapping "period" (time between remappings), expressed as a percentage of the execution

2The speedup of the implementation based on a hash-function is somewhat smaller than reported in our previous work,

owing to new optimizations in the serial version that significantly reduced its cost.

11

©
N

0.8

0.6

0.4

o

0.2

O

o

CDF of Class Size (in States), Sizes 1-100
1

/
/

i i i i i i i i i

0 10 20 30 40 50 60 70 80 90 100 0

States in Class

©
tq

E 0.8

•_ 0.6

0.4

o

0.2

O

o

CDF of Class Size (in States)

i i i i i

1000 2000 3000 4000 5000 6000

States in Class

F_G. 6.2. Cumulative distribution function of class size

time without remapping. Hence, the rightmost endpoints represent the case with no remapping. In real time

units, the remapping periods sampled were 1, 3, 5, 9, 11, 13, 21, 31, and oc seconds. The error bars illustrate

the highest and lowest speedups measured among all 5 samples; the lines pass through the averages. The

span of the error bars illustrate the variability between runs with identical parameters. First we look at

performance when balancing is performed on the memory load. We see that

* performance at the highest remapping frequency is worse than less aggressive remapping frequencies.

This is due to shorter periods of execution time over which the remapping overhead is amortized,

and may also be due to whatever synchronization "skew" exists by synchronization on distributed

real-time clocks.

* There is a significant range of frequencies over which performance is relatively constant.

* For 16 processors, performance drops off when there are fewer than 3 remappings.

* For 16 processors, there is a significant performance benefit to remapping.

* Performance for 8 processors is relatively insensitive to the remapping period, and there is small

benefit to remapping.

* For both 8 and 16 processors, attainable speedup is relatively close to the maximum possible (6.8

and 13.6).

For performance when balancing active load we draw most of the same conclusions, although the range of

frequencies over which performance is relatively constant is smaller. Also, interestingly, we see that there is

little to distinguish between balancing memory or active load; the latter is slightly faster.

Another view of the benefit of remapping is obtained by considering how computational demands vary

as the computation progresses. A first approximation to a processor's computational workload is the number

of states it explores between remappings. "Utilization" is then the ratio of average number of explored states

on a processor between remappings to the maximum number explored in that period. This is admittedly

inexact, as it does not account for time a processor spends searching for and inserting remotely generated

states into its data structures. Figure 6.4 illustrates how utilization varies for the two load definitions, for

the original hashing method (on the best hash function), and for our class-based method with remapping

disabled, with sampling every 3 seconds. Here we clearly see that remapping keeps utilizations high, as

long as there is ample workload. Utilizations tail off as the final pieces of the state-space graph are found.

By contrast, utilizations in the static methods degrade gradually, as processors exhaust their unexplored

state lists and must passively await receipt of an unexplored state from another processor before generating

12

©
©

O_

Speedup, Memory Load, 8 and 16 Processors
16

14

12

10

8

6

4

2

0
0

i i i i i i i i i

10 20 30 40 50 60 70 80 90 100

Remapping Period(% unmapped executiontime)

©
©

[/1

FIe. 6.3. Speedups

Processor Utihzafion

Speedup, Active Load, 8 and 16 Processors
16

14

12

10

8

6

4

2

0 i i i i i i i i i

0 10 20 30 40 50 60 70 80 90 100

Remapping Period (% unmapped execution time)

0.8

0.6

0.4

0.2

i i i i i i

5 l0 15 20 25 30

Real Thne (seconds)

i
i

i i

35 40

i

13
[]

D

i i

45 50 55

FIe. 6.4. Processor utilizations, 16 processors, two remapping methods and the original hashing method.

further states. It is interesting to note that the class-based static method tracks the dynamic methods early

in the computation, but then falls away quickly.

A clearer difference between balancing active and memory load is seen when we examine variability in

memory usage. Since balancing memory load gives us greater control over memory balance we expect its

memory utilization to be better. Memory balance varies as the computation progresses. While the terminal

memory balance is most important in some contexts, in others we are concerned with dynamics. For instance,

when the problem is very large relative to the number of processors, one or more processors can reach their

memory limitations and so degrade performance until remapping establishes a balance that frees them to

continue processing. Even before this, excessive memory use can force a processor's virtual memory system

to thrash. The better that balance can be maintained while processing, the smaller the risk of pushing a

processor against its memory limits.

Our implementation saves the number of states in a processor at every remapping timer interrupt. For

each such instant we will describe the global memory state with the unitless ratio (Smax -Smin)/Savg, where

S,_ax is the maximum number of states in any processor, 8mi n is the minimum, and Savg is the average.

For each time instant we plot the average of this statistic taken over 5 runs. Figure 6.5 displays this data,

comparing balancing memory and active loads for remapping intervals of 1, 3, and 5 seconds. Data for both

13

o

>

o

>

o

>

Remapping Interval = 1 sec, 16 Processors
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Active Load

Memory Load

i i i i i i i i

5 10 15 20 25 30 35 40 45

Real Time (seconds)

Remapping Interval = 3 sec, 16 Processors
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0

Active Load

Memory Load

o

4

>

o

4

>

Remapping Interval = 1 sec, 8 Processors
2

1.8 Active Load

1.6 Memory Load

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50 60 70 80

Real Time (seconds)

Remapping Interval = 3 sec, 8 Processors
2

Active Load

Memory Load

i i i i i i i i i i i i i

5 10 15 20 25 30 35 40 10 20 30 40 50 60 70

Real Time (seconds) Real Time (seconds)

>

Remapping Interval = 5 sec, 16 Processors
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Remapping Interval = 5 sec, 8 Processors
2

Active Load

Memory Load

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Active Load

Memory Load

i i i i i

5 10 15 20 25 30 35 0 10 20 30 40 50 60 70

Real Time (seconds) Real Time (seconds)

F_C. 6.5. Variation in memory utilization, as a function of time. Variation is measured as average ratio of the difference

between maximum and minimum memory usage to average memory usage.

8 and 16 processor runs is given. These plots show a clear distinction between the two notions of load. With

a remapping interval of one second the two methods execute at the same rate, yet the memory balance is

very noticeably different. It is notable that in all plots the variation starts high and is corrected, but then

tends to grow. Balancing memory load the growth is due to the built-in constraint against spending too

much time remapping. Balancing active load it is due to the fact that some imbalance simply cannot be

corrected--any class without unexplored states is ineligible for remapping. The data also suggests that the

methods differ less as the remapping frequency decreases.

A final view of remapping behavior is obtained by looking at statistics gathered at remapping epochs.

14

©

O

¢9
©

O

0.2

0.15

0.1

0.05

Total Remapping Overhead

.+!_\ Active Load

12001400_,!,
_ 1000 '_,,
U 8oo

600

Total Classes Remapped

Active Load

Memory Load

400

200

0 0
0 102030405060708090 0 102030405060708090

Remapping Period (% overall execution time) Remapping Period (% overall execution time)

F_c. 6.6. Fraction of execution time spent remapping, and total number of classes remapped. The remapping period is

expressed as a percentage of the overall execution time.

We measure the total amount of time spent synchronizing for, computing, and conducting remapping; we

also measure the total number of classes remapped (counting each move a class makes individually).

Figure 6.6 plots this data for the two load definitions, as a function of the remapping period, expressed

as the percentage of total execution time. We see that under the highest frequency of remapping, balancing

unexplored states exacts a very high overhead, 20% of the total execution time (our check against spending

more than 10% time in remapping overhead is both inexact, and applied only to transfer costs). We also see

very clearly that (surprisingly) balancing active load tends to have higher overhead, while balancing memory

load moves far more classes] Two factors may explain these observations. First, this data says nothing

about the sizes of the classes being moved (and we did not measure this). It may be that classes moved

when balancing unexplored states tend to be much larger. A second factor is the cost of computing which

states will be moved. The heart of the mapping algorithm searches through classes looking for the largest

movable ones that satisfy certain constraints. Since the set of classes with unexplored states is smaller, it

may be that much more searching is required. Both factors are mere conjectures.

7. Analysis. In this section we provide a simple analysis that explains locality between states in a

common class, and that looks at the scalability of remapping in the global fashion we have used.

When a state is classified by searching for it in the control class, some random number C of its components

will determine how the state compares with states in the control set. C need not be the depth of the tree;

for example the first component tested may indicate that the state is less than the tree root, and the same

component may indicate that it is greater than the tree's left child. So, if we choose a state s from some

class at random, C describes the number of its components that were involved in classifying the state. Now

consider any child of s. The child differs from s in some random number of components D. If that set of

components is entirely disjoint from the set of components used to classify the parent, then the child and

parent are assured to be in the same class. Note that the reverse is not true, that is, states might differ in

some (or even all) of the C components and still be in the same class, as previously observed for class 1 in

Figure 3.1.

The set of components used to classify s and the set of components in which parent and child differ are

independent, since the components used in the lexicographical ordering for comparison are randomized. If

the state vector has n components, the probability p_ that the child is in the same class as the parent is at

15

least

These expressions come from thinking of the sequence of selecting D components that distinguish parent

and child, without replacement from the vector of n components, each selection needing to avoid the C

components that classify the parent. Further bounding is possible by recognizing that n_c is convex in c, so

that by closure (n-c)a is convex in c for any d > 1. We may write
n J

= Pr{D = d}E
d=l

Jensen's Inequality [22] states that if g(x) is convex, then for any random variable where E[X] exists,

E[g(x)] k g(E[X]); thus for every d, E d k . Therefore

d=l

where the last step follows from another application of Jensen's Inequality. This last expression gives us a

way of considering how problem characteristics n, E[C], and E[D] affect locality. For the specific problem

used as illustration in this paper, n = 22 and we instrumented the program to estimate E[C] = 4.2 and

E[D] = 5.1. This yields p, > 0.34, as compared with the measured p, _ 0.51. The bound evidently is not

tight, but nevertheless is useful in describing the mechanics of locality and bounding locality from below.

We now turn to a simple analysis of the costs of computing a global view of load. Like many before us

we will model the cost of communicating one message as a constant startup cost, plus a length-dependent

transmission cost. The reductions we employ involve log P stages of message-passing, (P is the number

of processors) each stage separated by computation that performs the vector-length reduction locally. The

cost of computing the global reduction is modeled as (logP)(a + (/3 + _)P), where a is the startup cost,

/3 the per-integer transmission cost, and T the per-integer computation cost. We will view these constants

in units of machine cycles, a includes all MPI overhead and messaging protocol logic; a reasonable order

of magnitude is a = 10 4. On modern high-bandwidth networks/3 is small, say, /3 = 1. Computation costs

reflected by ")/include copying into and out of memory, and comparison. "y = 10 is reasonable.

The cost of computing a global snapshot increases as a function of P log P, we are interested in deter-

mining for what magnitude of P this cost is excessive. We do this by comparing the length-independent

and length-dependent costs. For a given fraction f we can compute the value of P for which the ratio of

length-independent and length-dependent costs is f:

a log P
f=

(log P)(a + (/3+ _)P)

16

Solvedfor P we obtain

(7.1)

1

1+ p (Z+_)

P=(f-1) (_).

To assess the relative cost of computing a global viewpoint, we ask ourselves what degree of dependency

on length we can tolerate. This consideration should include the amortization of the remapping cost over

computational periods between remaps. For instance, if an order of magnitude difference is acceptable we

would use f = 0.1. Using the estimates of a, /3, and 7 given earlier, on the order of 104 processors could

be tolerated with this approach. Considering today's technology, there is clearly room for two orders of

magnitude reduction in c_ and still have computation of a global viewpoint make sense. We conclude from

this analysis that remapping based on a global view should scale to machines available in the foreseeable

future, and when tens of thousands of processors are routinely used we can reassess the merits of the approach.

8. Conclusions. The generation of large discrete state-spaces is a computationally intensive activity

with extreme memory demands, highly irregular behavior, and poor locality of reference. As the generation

of large state-spaces causes virtual memory thrashing on single processor systems, we are lead to consider

exploiting the larger memory space available in parallel or distributed systems.

State-space generation is essentially a breadth-first generation and traversal of the reachability graph

that is implicit in the model semantics. The critical problem is determining whether a newly generated

state has been generated before. In a serial implementation this question is answered by organizing known

states in a search tree, and looking for the new state in that tree. As this is a centralized activity, any

parallel or distributed solution must find an alternative approach. The method we pursue is to assign states

to processors. After a state has been generated, it is sent to its assigned location, where a local search

tree determines whether the state already exists. Our solution entails automated classification of states into

classes, and dynamic mapping and remapping of classes to processors.

Our state classification system is based on randomization: states visited in a set of initial random walks

are organized in a search tree, using a randomized lexicographical comparison function. All states that exit

the search at the same point are in the same class. We provide analysis of the method that lower bounds

the probability that a child is in the same class as its parent, the bound is expressed in terms of easily

understood model characteristics.

Our remapping scheme uses a real-time clock to coordinate all processors periodically. When processes

coordinate, they use a global vector OR reduction to distribute a snapshot of the global load state. Each

processor uses the snap-shot to determine whether to send load, receive load, or do nothing. Further vector

reductions establish the number and identity of the classes involved in the balancing. The processors involved

in the exchange implement it, and all processors modify the global class-to-processor mapping table. We

analyze the cost of a global snapshot to argue that it scales to system sizes much larger than those we

anticipate would be commonly used for years to come.

We report on data collected on solution of a system model discussed earlier in the literature. We

considered two variations that differ in the notion of "load". One method balances extant classes without

explicit concern for balancing future state generation workload. The other method balances states that have

yet to be explored, without explicit concern for balancing existing states. We find that both methods execute

significantly faster and achieve better memory balance than static methods. However, while we find that

17

themethodthatbalancesmemorydoesindeedachievebettermemorybalance,it runsalmostasfastasthe
methodthat balancesfutureworkload.Forbothmethods,remappingtoooften(e.g.everysecond)degrades
performancedueto excessiveoverhead;backingoff somewhatamortizesremappingoverheadbut stays
responsiveto loadvariation.Ourdatasuggeststhat remappingfrequentlyandsufferinggreaterremapping
overheadisto bepreferredto lettingthecomputationgetwidelyoutofbalanceandthenattempttocorrectit.
Totheextentthatwecangeneralizefromourexperiments,it wouldseemthatweshouldremapasfrequently
aspossible,relativeto thespeedofthecommunicationmedium.Weexpectthat a longerremappingperiod
is neededonanethernet-connectednetworkof workstations,for instance,to avoidunduecommunication
overhead.

Thefundamentalmessageis that fordistributedorparalleldiscretestatespacegeneration,remapping
isessential.Wehavedemonstratedtechniquesthat proveits feasibilityanddemonstrateits potential.Key
elementsto oursuccesswereautomatedandefficientstateclassification,andlow-overheadmethodsfor
computingandusingglobalsnapshotsofloadstateto computeremappings.Accessconstraintsto theSP-2
forcedusto focusonarelativelysmallmodelinstancewhenconductingourparametricstudy.In fact,pilot
runsonlargermodelsdemonstrateevenmoresignificantperformancegainsdueto remapping,inonecase
weobservedafactorof5differencewhenusing32processors.Thepointisclear,remappingisessential,and
isfeasible.

Acknowledgements.Thecodeweworkedwithhasbeenmodifiedseveraltimes,byseveralpeople.The
originaldistributedstate-spacegenerationcodewasauthoredlargelyby JoshGluckman.JeremyGottlieb
portedthis codeto useMPIon theIBM SP-2.BarryLawsonimplementedmostofthe class-baseddata
structuresandbook-keeping.Tothesetirelessworkersweofferourthanks.

REFERENCES

[1]G.E.BLELLOCH, Scans as primitive parallel operations, IEEE Trans. on Computers, 38, No. 11 (1989),

pp. 1526-1538.

[2] G. CIARDO, J. GLUCKMAN, AND D. NICOL, Distributed state-space generation of discrete-state stochas-

tic models, To appear in INFORMS Journal on Computing, 1997.

[3] G. CIARDO AND K. TRIVEDI, A decomposition approach for stochastic reward net models, Performance

Evaluation, 18, No. 1 (1993), pp. 37-59.

[4] G. CIARDO, K. TRIVEDI, AND J. MUPPALA, SPNP: Stochastic Petri net package, in Proceedings of

the 3 ra Int. Workshop on Petri Nets and Performance Models, pp. 142-151, Kyoto, Japan, IEEE

Press, December 1989.

[5] G. CYBENKO, Dynamic load balancing for distributed memory multiprocessors, Journal of Parallel and

Distributed Computing, 7, No. 2 (1989), pp. 279-301.

[6] D.L. EAGER, E.D. LAZOWSKA, AND J. ZAHORJAN, Adaptive load sharing in homogeneous distributed

systems, IEEE Trans. on Software Engineering, SE-12, No. 5 (1986), pp. 662-675.

[7] D. GEROGIANNIS AND S. ORPHANOUDAKIS, Load balancing requirements in parallel implementations

of image feature extraction tasks, IEEE Trans. on Parallel and Distributed Systems, 4, No. 9 (1993),

pp. 994-1013.

[8] GRoPP, LUSK, AND SKJELLUM, Using MPI, MIT Press, Cambridge, Massachusetts, 1994.

[9] E. HOROWITZ AND S. SAHNI, Fundamentals of Data Structures, Computer Science Press, Potomac,

Maryland, 1978.

18

[10]L. KALE,Comparing the per]ormance o] two dynamic load distribution methods, in Proceedings of the

1988 Int. Conference on Parallel Processing, pp. 8-12, 1988.

[11] R. KARP AND Y. ZHANG, A randomized parallel branch-and-bound procedure, in Proceedings of the

20 th Annual ACM Symp. on Theory of Computing, pp. 290-300, 1988.

[12] V. KUMAR, A. GRAMA, AND N. VEMPATY, Scalable load balancing techniques]or parallel computers,

Journal of Parallel and Distributed Computing, 22 (1994), pp. 60-79.

[13] F. LIN AND R. KELLER, The gradient model load balancing method, IEEE Trans. on Software Engi-

neering, SE-13, No. 1 (1987).

[14] R. LOLING AND B. MONIEN, Load balancing]or distributed branch-and-bound, in Proceedings of 6 th

Int. Parallel Processing Symposium, pp. 543-548, 1992.

[15] D. NICOL, Communication efficient global load balancing, in Proceedings of the 1992 Scalable High

Performance Computing Conference, IEEE Press, April 1992.

[16] D. NICOL, Non-committal barrier synchronization, Parallel Computing, 21 (1995), pp. 529-549.

[17] D. NICOL, R. SIMHA, AND D. TOWSLEY, Static assignment o] stochastic tasks using majorization,

IEEE Trans. on Computers, 45, No. 6 (1996), pp. 730-740.

[18] D.M. NICOL AND P.F REYNOLDS, JR., Optimal dynamic remapping o] data parallel computations,

IEEE Trans. on Computers, 39, No. 2 (1990), pp. 206-219.

[19] D.M. NICOL AND J.H. SALTZ, Dynamic remapping o] parallel computations with varying resource

demands, IEEE Trans. on Computers, 37, No. 9 (1988), pp. 1073-1087.

[20] D.M. NICOL, J.H. SALTZ, AND J. TOWNSEND, Delay point schedules]or irregular parallel computa-

tions, Int. Journal of Parallel Programming, 18, No. 1 (1989), pp. 69-90.

[21] N. RAO AND V. KUMAR, Parallel depth-first-search, part I: Implementation, Int. Journal of Parallel

Programming, 16, No. 6 (1987), pp. 479-499.

[22] H.S. Ross, Stochastic Processes, Wiley, New York, 1983.

[23] J.A. STANKOVIC, An application o] bayesian decision theory to decentralized control o] job scheduling,

IEEE Trans. on Computers, C-34, No. 2 (1985), pp. 117-130.

[24] M. WILLEBEEK-LEMAIR AND A. REEVES, Strategies]or dynamic load balancing on highly parallel

computers, IEEE Trans. on Parallel and Distributed Systems, 4, No. 9 (1993), pp. 979-993.

[25] C.-Z. Xu AND F. LAU, Analysis o] the generalized dimension exchange method]or dynamic load bal-

ancing, Journal of Parallel and Distributed Computing, 16, No. 4 (1992), pp. 385-393.

[26] C.-Z. Xu AND F. LAU, Iterative dynamic load balancing in multicomputers, Journal of Operational

Research Society, 45, No. 7 (1994), pp. 786-796.

19

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2000

4. TITLE AND SUBTITLE

Automated parallelization of discrete state-space generation

6. AUTHOR(S)
David M. Nicol and Gianfranco Ciardo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

Contractor Report

5. FUNDING NUMBERS

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2000-11

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-210082
ICASE Report No. 2000-11

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

Journal of Parallel and Distributed Computing, Vol. 47, 1997, pp. 153-167.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We consider the problem of generating a large state-space in a distributed fashion. Unlike previously proposed

solutions that partition the set of reachable states according to a hashing function provided by the user, we explore

heuristic methods that completely automate the process. The first step is an initial random walk through the

state space to initialize a search tree, duplicated in each processor. Then, the reachability graph is built in
a distributed way, using the search tree to assign each newly found state to classes assigned to the available

processors. Furthermore, we explore two remapping criteria that attempt to balance memory usage or future

workload, respectively. We show how the cost of computing the global snapshot required for remapping will scale

up for system sizes in the foreseeable future. An extensive set of results is presented to support our conclusions that

remapping is extremely beneficial.

14. SUBJECT TERMS

Markov chain, dynamic remapping, state-space, breadth-first-search

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

24

16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

